跳到主要內容

萬里雲:GOOGLE 機器學習系統 TENSORFLOW LITE 離線辨識圖片效率大增

之前,臉書「垃圾文界的一位美少年」粉專上瘋傳一張辨識女星的驗證圖片,難倒一票夏于喬、宋芸樺傻傻分不清網友;隨後跑出一堆惡搞驗證圖,甚至還有辨識透抽的版本出現,讓參戰的網友們玩得不亦樂乎。

近期大家會發現,在 Google 填寫表單或臉書身份認證時,CAPTCHA 驗證方式變得越來越多元,文末將補充精彩的演進史。其中最常出現的就是以上的圖片辨識九宮格,要使用者指認出不同圖片中的物件,而這個功能其實就是TensorFlow 應用之一。
前年Google發佈了TensorFlow物件辨識API,讓開發者更容易在同一張圖片中辨識及定位多個不同物件。TensorFlow目前採開放架構設計,並開源提供開發者取用,希望能提升物件、人臉或影像品質等深度學習的速率與準確度。

上個月Google I/O 2017年會上,深度學習系統又進一步邁向了本次的重頭戲--輕量版的TensorFlow Lite。此版本在Android行動裝置上也能發揮人工智慧功能,藉由行動處理器進行裝置端的端點運算,甚至能夠支援離線操作。根據Google測試結果,在MobileNets系統運算下,離線準確率在70.7%~89.5%之間,雖然相比還是不及連上雲端的94%,但也已經十分出色,且在速度與方便性上更勝一籌。

TensorFlow發表近兩年來,已經幫助研究人員、醫療人員、工程師、藝術家、學生等各行各業增進工作效率,應用範圍包含更精確的機器翻譯、早期皮膚癌檢測、防止糖尿病的失明併發症等,族繁不及備載,如今已被用於超過六千個開源資料庫,未來應用的層面勢必更廣泛,深度學習將帶來的效益值得期待。
目前的機器深度學習技術其實不只有 Google TensorFlow,Facebook 去年推出的手機版新功能--創意效果相機,可偵測人臉及變換相片材質的互動式玩法,靠的也是他們專為手機設計的機器學習框架 Caffe2Go。而上個月蘋果 WWDC 2017 發表會上推出Core ML,開始在 iOS 11內導入裝置端的端點運算學習模型,試圖降低在 iOS裝置運行機器學習的困難度,期待iPhone、iPad等行動裝置在效能上能有更高效的表現。

CAPTCHA 小教室


CAPTCHA

Completely Automated Public Turing test to tell Computers and Humans Apart,俗稱驗證碼,是一種區分用戶是電腦或人的公共全自動程式。

reCAPTCHA

提供「有意義」的驗證碼讓使用者辨識,可能是 Google 地圖街景中的模糊文字、掃描古籍中的文字片段等等,這樣的驗證碼可以讓使用者在輸入的同時,幫助典籍或資料庫數位化建檔,也就是讓每一個用戶幫忙做數位校稿的工作。

No CAPTCHA reCAPTCHA

使用者只要在「我不是機器人」(I’m not a robot)的方框中打勾,就可以完成判別。新的API也在行動裝置上進行實驗,例如要求使用者選擇和範例圖片中物體相同的所有圖片。Google表示,在手機上點選簡單的動物圖片會比輸入一串枯燥扭曲的文字更為容易。

Invisible reCAPTCHA

無需用戶互動,利用演算法便可分辨人類和程式,詳情可以參考 Google reCAPTCHA 官方網頁。

參考資訊


CAPTCHA 又有新突破,Google 正準備「Invisible reCAPTCHA」
https://security.googleblog.com/2014/12/are-you-robot-introducing-no-captcha.html
Android O beta is available today
https://techcrunch.com/2017/05/17/android-o-beta-is-available-today/
Google釋出全新TensorFlow物件辨識API:不僅可在手機運作,甚至不用聯網
https://www.bnext.com.tw/article/44980/google-tensorflow-object-detection-api
Supercharge your Computer Vision models with the TensorFlow Object Detection API
https://research.googleblog.com/2017/06/supercharge-your-computer-vision-models.html
Google 開源機器學習系統 TensorFlow 1.0 正式發表
https://technews.tw/2017/02/18/google-announcing-tensorflow-1-0/
Caffe2go:Facebook最新的深度學習框架
https://kknews.cc/zh-tw/tech/jvr3zmy.html

留言

這個網誌中的熱門文章

COC 通報處理說明公告 - 20240811 通報事件

各位好, COSCUP COC 服務小組於 2024 年 8 月 11 日接獲一件通報,內容涉及在會期干擾議程進行;並於會後持續發送私訊予會中結識的講者;同時,該行為人亦被紀錄於活動當日干擾志工執行勤務。 有關此事件的處理過程,詳如下述: COC 服務小組接到通報後,於 8 月 15 日正式成立專案小組進行討論與檢視相關資料。經查,通報內容與 COC 條款「持續干擾議程或活動的正常進行,無視工作人員或與會者的制止」相符。同一行為人於大會期間,另有兩位會眾通報類似事件,COC 服務小組皆已明確指正其行為並重申 COC 規範和界線。綜合此次會後通報,行為人經提醒仍多次抵觸 COC 條例。 有鑒於上述行徑已明確影響 COSCUP 其他會眾之權益,COC 服務小組將依照 COSCUP COC 之辦法記錄事件處理過程及結果、行為人資料等,於籌備團隊組長群資料夾建立文件,以俾後續籌備團隊審慎思量該名行為人未來的參與形式與程度。 在此,感謝會眾願意信任 COC 和 COSCUP 團隊並且將其所遇到的事件於會後彙整提供予我們。另本次通報中,通報人所提及之部分事項,因非屬 COSCUP 大會參與期間和相關行為,已建議通報人另行循其他正規途徑處理。在此聲明, COSCUP 的 COC 落實並非要拒任何人於門外,而是希冀透過針對行為本身的評估,為無論志工、社群協調人、講者、廠商與所有會眾營造舒適與安全的交流環境。 我們在乎所有人於 COSCUP 大會的各種參與體驗與感受,如果您在大會和籌組期間有相關困擾,籌備團隊志工將會竭力協助釐清,希望一同打造友善的 COSCUP 與會環境。 COSCUP 2024 COC 服務小組

你所不知道的 foodpanda

  2020 左右,隨著新冠疫情流行,台灣也逐漸流行起一股懶人旋風。懶懶躺在沙發上,動動手指滑滑螢幕,生鮮或美食就能快速又安全地由可愛的粉紅色熊貓外送員送達您門口。多數人知道 foodpanda 是台灣最大生鮮美食外送平台,也不少人知道 foodpanda 在台灣不斷擴張業務範圍,但 foodpanda 也有許多台灣科技圈所不知道的事。 例如,foodpanda 其實並非台灣本土廠商,也非只專注在亞洲區域。foodpanda 隸屬於德國 Delivery Hero 集團,業務橫跨歐洲、亞洲、美洲及北非,旗下更有十多個生鮮美食外送品牌。除此之外,foodpanda 於 2021 年時也在台灣正式成立全球第三個 Tech Hub。做為四大產品 RD 研發中心之一,台灣與德國柏林、新加坡及土耳其伊斯坦堡的人才緊密地合作,專注於打造 end-to-end 的顧客體驗。諸如月費方案 Panda Pro、外帶自取、餐廳內用 (目前仍未在台灣上市) 等功能。期待能持續吸收優秀人才、與其它三個跨國研發中心合作,打造後疫情時代新的成長引擎。 事實上,台灣的 foodpanda 研發團隊並不僅止於打造台灣本土產品。反之,我們所建立的平台及產品,已成功於近 20 個國家、10 個品牌上市。要在快速的步調下,打造持續進步且符合不同國家文化客戶需求的產品,我們依靠的是 專案團隊成員一條龍組合 從 Product Manager、Engineering Manager、iOS/Android/Web/Backend developer、QA、Product Designer、Product Analyst 全都在同一個 product line squad。讓相同產品的團隊成員能緊密合作、第一手快速了解市場、滿足需求。 國際專業團隊緊密合作 foodpanda 的 iOS/Android/Web/Backend 等專業工程師,都各自設有其跨 squad 的 chapter 組織。讓工程師能在專案團隊以外,有跨國跨團隊專業能力交流的機會。在 chapter 中,相同技術域領的專家們,會一起制定共同的實作標準、分享在專案中遇到類似的挑戰,並且找出可能的應對方案。因此,在 foodpanda 我們不只打產品專案團隊的速度戰、還打整個集團的整合能力團體戰,讓德國、新加坡、台灣、伊斯坦堡的工程師...

利用 Jitsi 建立個人化的視訊會議平台

  近期因為疫情的關係,越來越多企業開始實施分流或在家工作,視訊會議的需求也日益增加。 在商用解決方案選擇上,有不少企業會選擇知名品牌的產品,例如  Cisco Webex 、 Google Meet 、 Microsoft Teams 、 Zoom  都是很不錯的方案。 KKBOX 集團在去年便試行及做好充分 work from home 的準備,今年五月也因應疫情升溫,全員 work from home 至今兩個月有餘。 當然,取之 Open Source,也要對社群有些貢獻。在這一屆 COSCUP,我們要來介紹 Open Source 圈中也很知名,效果也很不錯的一套視訊會議平台: Jitsi 。 除了基本的視訊會議功能外,在最後我們也會示範如何透過 Jitsi 畫面輸出到 YouTube/Twitch 或其他支援 RTMP 的平台進行直播。 由於篇幅有限,且 Jitsi 可以調整的細節非常多。今天我們純粹很快速的示範,如何簡單的建置出一個 Jitsi 環境,並提供單場會議內容錄影或直播。 Jitsi 的文件可以在 這裡 找到。 今天透過 AWS Lightsail 的 $10/month instance(1 core CPU + 2GB RAM + 60GB SSD),作業系統則是 Ubuntu 20.04 來示範。當然,使用其他 VPS 亦可,大同小異,這邊直接跳過 VPS 相關的建置過程。 *firewall 相關資料參考 這裡 及 這裡 。 針對系統做必要的更新 基本的 apt repository 更新: $ sudo apt update 因為後面要示範的會議錄影及直播需要使用 ALSA loopback device,如果是 EC2 or Lightsail 則需要額外安裝 generic kernel( 註 ): $ sudo apt install linux-image-generic linux-headers-generic linux-image-extra- virtual 接著做系統套件們的更新: $ sudo apt dist-upgrade $ sudo apt autoremove 如果是 AWS EC2 or Lightsail 則需要另外再將預設的 AWS optimized kernel...