跳到主要內容

新時代的開始:大型語言模型從新穎工具變為商業必需

Appier 技術長陳明愉博士

人們對大型語言模型(LLM)的態度已經從單純的嘗鮮轉變為實際需求,如 ChatGPT 和 Bard 等大型語言模型已逐漸成為商業領域中不可或缺的工具。預計到 2027 年,企業在生成式人工智慧(AI)解決方案上的投入將達到 1,511 億美元,且 2023 到 2027 年的複合年增長率將達到 86.1%,顯示企業對 AI 應用的興趣正在急速上升。

大型語言模型已從最初的熱門話題轉變為企業的策略焦點,力求將 AI 更深度地融入商業運作中。例如,麥肯錫的年度 AI 發展現狀調查顯示,有三分之一的企業至少在一項業務中固定採用生成式 AI。同時,有 25% 使用 AI 的企業表示生成式 AI 已被納入其董事會議程,凸顯了 AI 在企業決策面的重要性。

隨著生成式 AI 解決方案的發展更具策略性和針對性,企業加大技術應用的態勢必將提升整體績效,使 2024 年成為企業採用大型語言模型的關鍵一年。這項演進標誌著新時代的來臨,在這個時代中, AI 不再只是一項實驗性工具,更是企業發展策略和營運的基本要素。

大型語言模型應用:2023 年與 2024 年

在 2023 年,雖然有部分公司員工開始嘗試使用 ChatGPT 及其他大型語言模型工具,這些工具主要用於撰寫電子郵件或回覆訊息。更具前瞻性的人可能會利用這些工具來撰寫提案或其他篇幅較長的文件。然而,有鑑於大型語言模型生成的內容可能出現不符事實或類似幻覺的情況,大多數時候,這些內容僅用於內部參考,並不適合用於外部公開場合。

然而現在,經過一年的實驗和改進,大型語言模型開發人員已經準備好推出──或者已經推出面向企業的商務版產品,以滿足企業開發的需求。其中最受矚目的,莫過於「客戶服務」和「內容創建」兩大應用領域,今年,這兩項應用的品質與採用率可望有顯著的提升。

為什麼是 2024 年?

2024 年將成為大規模採用大型語言模型應用程式的轉捩點之年,背後驅動的兩大關鍵因素是「技術演進」和「市場情緒」。自從 ChatGPT 於 2022 年 11 月面世以來,大型語言模型技術已經從單純完善文案和分析模型,演變成為功能全面的聊天機器人,不僅能執行程式碼、運用工具,還能存取外部知識和搜尋網路。換言之,在短短不到 12 個月的時間裡,這項具有革命性意義的工具已徹底改變了整個技術社群的面貌。

然而,如果高階主管不買賬,這些技術演進便難以在市場上獲得認可──這正是 2023 年的瓶頸所在。現在,大多數執行長都已達成共識,認為在業務營運中採用 AI 解決方案是當務之急,他們明確表示,投資 AI 至關重要。隨著更多針對特定垂直產業的大型語言模型問世,企業採用和部署這些生成式 AI 解決方案將變得更加容易。 2024 年,大型語言模型開發人員還將著手解決一項關鍵挑戰──資料安全。技術開發人員將提供一個讓企業將數據存在其內部系統的解決方案,進而提供更安全、更強大的產品,以滿足那些重視風險管理的執行長的需求,獲得他們的青睞。

2023 年,各國政府及其他監管機構在規範 AI 方面面臨挑戰。去年 12 月,歐盟就《AI法案》達成共識,這是一項具里程碑意義的法案,旨在對 AI 的使用進行規範和限制。該法案一經實施,以及隨後可能出台的相關法案,將對科技公司開發 AI 解決方案的方式產生深遠影響。簡言之,這些法案將對何種行為是許可的、何種行為是禁止的,建立基本的規則框架。

隨著更強大的功能、更廣泛的支持以及更清晰的認識,預期大型語言模型應用程式將在全球各大型企業中得到更具規模化的採用。

客戶服務、內容創作與大型語言模型

想像一下,如果 ChatGPT 是網站上的客服聊天機器人,你根本無法分辨真人與機器人。而將 大型語言模型聊天機器人整合到客戶服務中,也為企業提供了一個節省成本的機會,能隨時為客戶提供服務。實際上,隨著消費者對企業和企業體驗的要求越來越高,這些大型語言模型聊天機器人可以提供更個人化的互動,並且提高客戶滿意度。

使用大型語言模型創建內容的優點之一是速度快。如果你不滿意它生成的結果,只需重新調整提示措辭,不到一分鐘就能獲得新的結果。這在行銷和廣告領域尤其有用,因為多變量測試和迭代是獲致最佳化內容的關鍵。無論是廣告標語、充滿資訊的部落格文章,甚至是短篇小說,大型語言模型都能夠借助其被訓練過的大量數據來產生新的想法和文本。

除了速度之外,讓企業購買和使用這些大型語言模型進行內容創作的原因還包括內容的多樣性,像形式、風格和語氣。在 ChatGPT 剛出現的時候,人們擔心所有的內容最終會變得千篇一律。如果讓 ChatGPT 寫一篇關於某個主題的部落格文章,同時兼顧搜尋引擎優化,可能會導致所有文章一成不變;但由於提示工程(prompt engineering)的存在,這項擔憂並未發生。

只要稍微改變一下提示用語,ChatGPT 和解決方案就能就同一主題產生不同的內容。更重要的是,使用者可以要求大型語言模型內容創作者採用某種寫作風格或語氣。當然,這也是迭代的關鍵所在,因為最優秀的用戶會反覆使用大型語言模型來訓練它,讓它聽起來更像自己。大型語言模型的最終目標是讓在最短的時間內產出聽起來像公司創作的優秀內容。

大型語言模型將如何重新定義 2024 年以及企業的未來

隨著 2024 年的到來,大型語言模型從實驗工具到重要商業資產的轉變變得越來越清晰。這些模型在技術能力方面取得了顯著的進步,如今在客戶服務和內容創建等領域發揮至關重要的影響力,能夠提供無與倫比的效率和客製化服務。今年不僅是技術進步的一年,也是將這些工具整合到業務運營結構中,並與不斷變化的監管環境和執行策略持續對焦的一年。

LLM 的廣泛採用證明了其徹底改變企業營運、溝通和創新方式的潛力。在我們見證這一轉變的過程中,我們可以清楚地看到,大型語言模型不僅是企業未來的一部分,它們還在積極塑造未來,在數位化日益加劇的世界中為企業的成長和效率開創新的途徑。

關於 Appier

Appier 是一家以人工智慧(AI)為核心的軟體即服務(SaaS)公司,運用 AI 協助企業進行商業決策。 Appier 成立於 2012 年,以實現 AI 的普及化為願景,透過軟體智慧化將 AI 轉換為投資回報,助力客戶實現業務成長。如今在亞太地區、歐洲及美國擁有 17 個營業據點,並於東京證券交易所掛牌上市(股票代號 4180)。欲了解更多訊息,請造訪 www.appier.com

螢幕擷取畫面 2024-05-08 110432

留言

這個網誌中的熱門文章

利用 Jitsi 建立個人化的視訊會議平台

  近期因為疫情的關係,越來越多企業開始實施分流或在家工作,視訊會議的需求也日益增加。 在商用解決方案選擇上,有不少企業會選擇知名品牌的產品,例如  Cisco Webex 、 Google Meet 、 Microsoft Teams 、 Zoom  都是很不錯的方案。 KKBOX 集團在去年便試行及做好充分 work from home 的準備,今年五月也因應疫情升溫,全員 work from home 至今兩個月有餘。 當然,取之 Open Source,也要對社群有些貢獻。在這一屆 COSCUP,我們要來介紹 Open Source 圈中也很知名,效果也很不錯的一套視訊會議平台: Jitsi 。 除了基本的視訊會議功能外,在最後我們也會示範如何透過 Jitsi 畫面輸出到 YouTube/Twitch 或其他支援 RTMP 的平台進行直播。 由於篇幅有限,且 Jitsi 可以調整的細節非常多。今天我們純粹很快速的示範,如何簡單的建置出一個 Jitsi 環境,並提供單場會議內容錄影或直播。 Jitsi 的文件可以在 這裡 找到。 今天透過 AWS Lightsail 的 $10/month instance(1 core CPU + 2GB RAM + 60GB SSD),作業系統則是 Ubuntu 20.04 來示範。當然,使用其他 VPS 亦可,大同小異,這邊直接跳過 VPS 相關的建置過程。 *firewall 相關資料參考 這裡 及 這裡 。 針對系統做必要的更新 基本的 apt repository 更新: $ sudo apt update 因為後面要示範的會議錄影及直播需要使用 ALSA loopback device,如果是 EC2 or Lightsail 則需要額外安裝 generic kernel( 註 ): $ sudo apt install linux-image-generic linux-headers-generic linux-image-extra- virtual 接著做系統套件們的更新: $ sudo apt dist-upgrade $ sudo apt autoremove 如果是 AWS EC2 or Lightsail 則需要另外再將預設的 AWS optimized kernel...

鑽石級贊助商 - KKBOX 帶你打造具備 NLP 功能的 Telegram Bot (上)

打造具備 NLP 功能的 Telegram Bot(上) 最近因為一些契機學了 Python 3,用它做了一個 Telegram Bot ( GitHub 連結 ),裡面用到 NLP Service,用上下兩篇文章記錄一下實作過程還有眉角。上篇首先教大家如何做一個最基本的回聲 Chatbot,接下來我們可以透過 NLP 服務,讓 Chatbot 根據使用者不同的訊息做回答,這樣就變成更加人性化的聊天機器人囉! 使用的工具及服務: Python 3 (for develop) pipenv (for dependency management) OLAMI (for NLP) ngrok (for testing) Step 1. Creating new bot Telegram 很有趣的地方在於,與其他通訊軟體(Line、Messenger)相比,開發者管理 Bot 的方式也是透過官方提供的一位 Bot 在處理的,它叫做 BotFather (眾 Bot 之父 XD)。如果已經有 Telegram 帳號,只要加 BotFather 為好友,就可以開始管理你的 Bot。 加入 BotFather 好友後,它會親切地問候,並告訴你他能為你提供什麼服務。 I can help you create and manage Telegram bots. If you're new to the Bot API, please see the manual ([https://core.telegram.org/bots](https://core.telegram.org/bots)). You can control me by sending these commands: /newbot - create a new bot /mybots - edit your bots [beta] /mygames - edit your games ([https://core.telegram.org/bots/games](https://core.telegram.org/bots/games)) [beta] Edit Bots /setname - change a bot's name /setdescr...

機器學習的五大實務問題:對企業的影響與相應的化解方式

Appier 首席機器學習科學家 林守德博士 正如 Jason Jennings 及 Laurence Haughton 在《以快吃慢–如何藉速度在商戰中克敵制勝》一書中指出──未來,不是大公司吃掉小公司,而是速度快的公司吃掉速度慢的公司。 從現在開始,唯有善用適當的資訊快速做出決策的企業,才能成為戰場上的贏家。 機器學習技術驅動了這場變革。無論企業是嘗試向顧客提出建議、改進生產製造流程或應對市場的變動,都能運用機器學習技術處理大量的資料,進而提高自身的競爭優勢。 然而,機器學習雖能創造大好機會,卻也同時帶來了相應的挑戰。機器學習系統需要大量的資料,以及執行複雜的運算能力。顧客期望改變、出乎意料的市場波動等等外部因素,都意味著機器學習模型的運作並不是百分之百的自動,往往仰賴許多外部的資源來作監控及維護。 此外,機器學習也有不少尚待解決的實務問題。以下將深入探討機器學習的五大實務問題,以及這些問題對企業應用會產生的影響。 1. 資料品質 機器學習系統仰賴資料進行訓練,而訓練資料在廣義上可分為「特徵」及「標籤」兩種類別。 「特徵」是輸入機器學習模型的資料,像是來自感測器、顧客問卷、網站 cookie 或歷史資訊等等。 然而這些特徵的品質可能良莠不齊。舉例而言,顧客在填寫問卷時可能會隨便填寫,或對題目略而不答;感測器可能因失靈而回傳錯誤資料;即使使用者的網頁行為明確,網站 cookie 回報的資訊也可能不完整。 此外,資料也可能包含雜訊,當無謂的資訊夾雜其中時,機器學習模型將會受到誤導而做出不正確的預測。 相較於「特徵」,「標籤」的正確性與穩定度更為重要。標籤是機器學習模型最後輸出的結果。所以需要在訓練的時間利用正確的結果教導機器學習模型。標籤的稀疏性也是個問題,這是當系統已掌握大量輸入的資料卻對輸出的結果沒有把握時出現的現象。在這樣的情況下,將難以針對該模型偵測其特徵與標籤之間的關聯性優化,甚至需要耗費額外的人力干預,將標籤與輸入資料關聯起來。 機器學習需仰賴輸入與輸出資料的關聯,才能具備足夠的泛化能力以預測未來行動並提供相關建議。因此,如果輸入資料過於雜亂、殘缺或有所偏差時,將可能難以理解某輸出/標籤的產出原因。近年來機器學習也開發出許多先進的方法如半指導式學習,轉移學習來處理這樣的問題。 2. 複雜性與品質的取捨 建立強大的機器學習模型需要大量的計算資源來處理特徵和...